

Thermochimica Acta 306 (1997) 99-103

thermochimica acta

# Excess molar enthalpies of diethyl carbonate + fourteen *n*-alkyl alkanoates at 298.15 K

Romolo Francesconi<sup>a,\*</sup>, Carlo Castellari<sup>a</sup>, Fabio Comelli<sup>b</sup>

<sup>a</sup> Dipartimento di Chimica G. Ciamician, Universita' degli Studi, via Selmi 2, 1-40126 Bologna, Italy <sup>b</sup> Centro di Studio per la Fisica delle Macromolecole del CNR, via Selmi 2, 1-40126 Bologna, Italy

Received 12 May 1997; accepted 19 June 1997

#### Abstract

Excess molar enthalpies of binary mixtures containing diethyl carbonate + fourteen *n*-alkyl alkanoates (six acetates, four propanoates and four butyrates) have been determined at 298.15 K and at atmospheric pressure using an LKB flow microcalorimeter. The experimental data have been fitted to the Redlich-Kister equation to estimate the binary parameters. The results have been qualitatively discussed.  $\bigcirc$  1997 Elsevier Science B.V.

Keywords: Calorimeter; Data correlation; Enthalpy

# 1. Introduction

This contribution is part of a continuing research program of determination of the thermodynamic properties of binary mixtures containing dialkyl carbonates [1–3], used as solvents for a variety of extractions of industrial interest, in the synthesis of pharmaceuticals and agricultural chemistry. In this paper, we report experimental data on excess molar enthalpy,  $H_m^E$ , of diethyl carbonate, as common component (component 1), with fourteen *n*-alkyl alkanoates which are six acetates (methyl  $\rightarrow$  hexyl acetate), four propanoates (methyl  $\rightarrow$  butyl propanoate) and four butyrate (methyl  $\rightarrow$  butyl butyrate).

No data have been found for these mixtures in literature.

# 2. Experimental

#### 2.1. Chemicals

Table 1 collects the origin and the stated purities of the chemicals which were used as received. The stated purity of all chemicals is  $\geq 99 \text{ mol}\%$  and no further purification was carried out: a GLC analysis did not detect any appreciable impurity peak. Purities were also checked by determining their densities,  $\rho$ , at 293.15 or 298.15 K and are reported in Table 2 in comparison with literature data [4–9].

Densities have been determined using a density meter (Anton Paar, model 60/602, Graz, Austria) with an accuracy of  $1 \times 10^{-5}$  g cm<sup>-3</sup>.

Before measurements, the chemicals were kept in dark bottles, dried over molecular sieves (Union Carbide, type 4A, 1/16-in pellets) and degassed prior

<sup>\*</sup>Corresponding author.

<sup>0040-6031/97/\$17.00 (</sup>C) 1997 Elsevier Science B.V. All rights reserved *P11* \$0040-6031(97)00304-3

 Table 1

 Origins and stated purities of the pure components

| Component         | Origin  | Stated purity/mol% |
|-------------------|---------|--------------------|
| Diethyl carbonate | Aldrich | > 99               |
| Methyl acetate    | Fluka   | > 99               |
| Ethyl acetate     | Fluka   | > 99.5             |
| Propyl acetate    | Aldrich | 99                 |
| Butyl acetate     | Aldrich | 99.7               |
| Pentyl acetate    | Aldrich | 99                 |
| Hexyl acetate     | Aldrich | 99                 |
| Methyl propanoate | Aldrich | 99                 |
| Ethyl propanoate  | Aldrich | 99                 |
| Propyl propanoate | Aldrich | 99                 |
| Butyl propanoate  | Aldrich | 99                 |
| Methyl butyrate   | Aldrich | 99                 |
| Ethyl butyrate    | Aldrich | 99                 |
| Propyl butyrate   | Aldrich | 99                 |
| Butyl butyrate    | Fluka   | > 99               |

to actual measurements by ultrasound (ultrasonic bath, Hellma, type 460, Milan, Italy).

#### 2.2. Calorimetric measurements

Experimental excess molar enthalpies,  $H_m^E$ , have been determined at 298.15 K and at atmospheric pressure.

An LKB flow microcalorimeter (LKB Produkter, model 2107, Bromma, Sweden) equipped with two

Table 2

Comparison between measured densities,  $\rho$ , and literature data for pure components

|                    |             | $\rho/\mathrm{g}\mathrm{cm}^{-3}$ |             |
|--------------------|-------------|-----------------------------------|-------------|
| Component          | <i>T/</i> K | This paper                        | Lit.        |
| Diethyl carbonate  | 298.15      | 0.96924                           | 0.96926 [4] |
| Methyl acetate     | 298.15      | 0.92663                           | 0.9270 [5]  |
| Ethyl acetate      | 298.15      | 0.89438                           | 0.8943 [6]  |
| Propyl acetate     | 298.15      | 0.88333                           | 0.8831 [7]  |
| Butyl acetate      | 298.15      | 0.87620                           | 0.87634 [4] |
| Pentyl acetate     | 298.15      | 0.87209                           | 0.8719 [4]  |
| Hexyl acetate      | 298.15      | 0.86856                           | 0.86843 [8] |
| Methyl propanonate | 293.15      | 0.91489                           | 0.9150 [9]  |
| Ethyl propanonate  | 298.15      | 0.88432                           | 0.8840 [4]  |
| Propyl propanonate | 293.15      | 0.88111                           | 0.8809 [9]  |
| Butyl propanoate   | 293.15      | 0.87543                           | 0.8754 [9]  |
| Methyl butyrate    | 293.15      | 0.89850                           | 0.8984 [9]  |
| Ethyl butyrate     | 298.15      | 0.87356                           | 0.87394 [4] |
| Propyl butyrate    | 293.15      | 0.87293                           | 0.8730 [9]  |
| Butyl butyrate     | 293.15      | 0.86960                           | 0.8700 [9]  |

automatic solvent pumps (ABU, Radiometer, Copenhagen, Denmark) necessary to pump pure liquids into the mixing cell of the calorimeter, were used for the measurements of the excess molar enthalpies of the mixtures. Details of calibration and operating procedure have been previously reported [10,11]. The instrument was thermostated to  $298.15 \pm 0.01$  K and controlled by calibrated transistors inside the calorimeter.

The mole fractions  $x_1$  of diethyl carbonate were determined from fluxes and are accurate to  $\pm 0.0002$  and the errors in  $H_m^E$  are estimated to be in the range  $0.5-1 \text{ J mol}^{-1}$ .

The test mixture hexane + cyclohexane was used to check the calorimeter and our results show a discrepancy of less than 0.5% from those of literature [12].

## 3. Correlation of the calorimetric data

Table 3 summarizes the experimental data of  $x_1$  and  $H_m^E$  while Figs. 1–3 show their graphical representation.

The Redlich-Kister polynomial

$$H_{\rm m}^{\rm E} = x_1 x_2 \sum_{k \ge 0} a_k (x_1 - x_2)^k \tag{1}$$

was fitted to each set of results in Table 3 by the



Fig. 1. Excess molar enthalpies,  $H_m^E$ , of diethyl carbonate(1) + methyl acetate(2)( $\bullet$ ), + ethyl acetate(2)( $\blacksquare$ ), + propyl acetate(2)( $\blacktriangle$ ), + butyl acetate(2)( $\blacktriangleright$ ), + pentyl acetate(2)( $\blacktriangledown$ ), + Hexyl Acetate(2)( $\blacktriangle$ ) at 298.15 K. Solid curves, calculated by Eq. (1).

Table 3 Mole fractions,  $x_1$ , and excess molar enthalpies,  $H_m^E$ , of diethyl carb

# Table 3 (Continued)

| carbonate(1) + $n$ -alkyl alkanoates(2) at 298.15 K |                                            |           | Dietyl carbonate(1) + hexyl acetate(2)     |              |                   |                 |      |
|-----------------------------------------------------|--------------------------------------------|-----------|--------------------------------------------|--------------|-------------------|-----------------|------|
| Xı                                                  | $H_{\rm E}^{\rm E}/{\rm J}~{\rm mol}^{-1}$ | X1        | $H_{\rm E}^{\rm E}/{\rm J}~{\rm mol}^{-1}$ | 0.0537       | 23                | 0.6714          | 120  |
|                                                     | -m -                                       |           |                                            | 0.1019       | 42                | 0.7315          | 108  |
| Diethyl car                                         | bonate(1) + methyl a                       | cetate(2) |                                            | 0.1455       | 57                | 0.8034          | 89   |
| 0.0266                                              | 12                                         | 0.4960    | 98                                         | 0.1850       | 70                | 0.8449          | /0   |
| 0.0518                                              | 22                                         | 0.56/4    | 95                                         | 0.2340       | 90                | 0.8910          | 22   |
| 0.0758                                              | 32                                         | 0.6631    | 82                                         | 0.3123       | 105               | 0.9159          | 44   |
| 0.0985                                              | 39                                         | 0.7240    | 71                                         | 0.4052       | 120               | 0.9424          | 30   |
| 0.1409                                              | 53                                         | 0.7974    | 56                                         | 0.4759       | 128               | 0.9703          | 15   |
| 0.1794                                              | 62<br>70                                   | 0.8399    | 46                                         | 0.5767       | 127               |                 |      |
| 0 2470                                              | /8                                         | 0.8873    | 34                                         | D'al 1       |                   | 1               |      |
| 0.3042                                              | 86                                         | 0.9403    | 19                                         | Dietnyl car  | bonate(1) + metny | 1 propanoate(2) | 40   |
| 0.3961                                              | 94                                         |           |                                            | 0.0318       | 0                 | 0.5425          | 49   |
| <b>D</b> : 1 1                                      |                                            |           |                                            | 0.0017       | 11                | 0.0125          | 48   |
| Diethyl car                                         | bonate(1) + ethyl ace                      | tate(2)   | 2.0                                        | 0.0898       | 10                | 0.7033          | 43   |
| 0.0326                                              | -0.3                                       | 0.5480    | -2.8                                       | 0.1103       | 19                | 0.7596          | 30   |
| 0.0631                                              |                                            | 0.61/8    | -1./                                       | 0.1048       | 23                | 0.8258          | 20   |
| 0.1187                                              | -1./                                       | 0.7080    | 0.4                                        | 0.2085       | 30                | 0.8034          | 21   |
| 0.2122                                              | 3.6                                        | 0.8291    | 2.3                                        | 0.2832       | 30                | 0.9046          | 15   |
| 0.2878                                              | -4.4                                       | 0.9065    | 2.3                                        | 0.3450       | 41                | 0.9499          | ŏ    |
| 0.3501                                              | -4.3                                       | 0.9510    | 1.6                                        | 0.4415       | 47                |                 |      |
| 0.4470                                              | -4.0                                       |           |                                            | Diethyl car  | bonate(1) + ethyl | propanoate(2)   |      |
| Diethyl car                                         | honate(1) + propyl ac                      | etate(2)  |                                            | 0.0732       | -0.6              | 0.6546          | -2.9 |
| 0.0380                                              | 16                                         | 0 5873    | 21.0                                       | 0.1364       | -1.1              | 0.7398          | -1.7 |
| 0.0732                                              | 3.6                                        | 0.6548    | 19.9                                       | 0.2400       | -3.0              | 0.7912          | -1.2 |
| 0.1060                                              | 56                                         | 0.7400    | 17.7                                       | 0.3215       | -3.8              | 0.8504          | -0.5 |
| 0.1365                                              | 73                                         | 0 7914    | 15.1                                       | 0.3871       | -4.5              | 0.8835          | -0.2 |
| 0 1917                                              | 10.5                                       | 0.8506    | 11.1                                       | 0.4865       | -4.4              | 0.9192          | -0.1 |
| 0.2402                                              | 12.2                                       | 0.8836    | 86                                         | 0.5870       | -3.7              |                 |      |
| 0.3217                                              | 16.3                                       | 0.9193    | 64                                         |              |                   |                 |      |
| 0.3874                                              | 18.2                                       | 0.9579    | 3.4                                        | Diethyl car  | bonate(1) + propy | propanoate(2)   |      |
| 0.4868                                              | 20.9                                       |           |                                            | 0.0431       | 7                 | 0.6187          | 46   |
|                                                     |                                            |           |                                            | 0.0827       | 14                | 0.6839          | 41   |
| Dietyl carbo                                        | onate(1) + butyl aceta                     | te(2)     |                                            | 0.1191       | 19                | 0.7644          | 33   |
| 0.0433                                              | 3.1                                        | 0.6200    | 23.9                                       | 0.1527       | 23                | 0.8123          | 27   |
| 0.0831                                              | 6.3                                        | 0.6850    | 22.0                                       | 0.2128       | 31                | 0.8665          | 18   |
| 0.1197                                              | 9.6                                        | 0.7492    | 18.3                                       | 0.2650       | 36                | 0.8964          | 14   |
| 0.1534                                              | 12.2                                       | 0.8131    | 15.8                                       | 0.3510       | 43                | 0.9285          | 9    |
| 0.2138                                              | 15.7                                       | 0.8671    | 11.5                                       | 0.4190       | 46                | 0.9629          | 4    |
| 0.2660                                              | 19.0                                       | 0.8969    | 8.6                                        | 0.5196       | 48                |                 |      |
| 0.3522                                              | 22.7                                       | 0.9288    | 6.3                                        |              |                   |                 |      |
| 0.4203                                              | 24.3                                       | 0.9631    | 3.3                                        | Diethyl carl | bonate(1) + butyl | propanoate(2)   |      |
| 0.5210                                              | 25.4                                       |           |                                            | 0.0342       | 12                | 0.6468          | 94   |
|                                                     |                                            |           |                                            | 0.0923       | 30                | 0.7093          | 87   |
| Diethyl carl                                        | ponate(1) + pentyl ac                      | etate(2)  |                                            | 0.1323       | 44                | 0.7854          | 72   |
| 0.0485                                              | 9                                          | 0.6474    | 64                                         | 0.1690       | 54                | 0.8299          | 60   |
| 0 0926                                              | 17                                         | 0.7100    | 59                                         | 0.2338       | 69                | 0.8798          | 43   |
| 0 1327                                              | 25                                         | 0.7860    | 48                                         | 0.2891       | 80                | 0.9071          | 33   |
| 0.1694                                              | 32                                         | 0.8304    | 40                                         | 0.3789       | 93                | 0.9361          | 26   |
| 0.2343                                              | 42                                         | 0.8802    | 30                                         | 0.4486       | 99                | 0.9670          | 14   |
| 0.2898                                              | 51                                         | 0.9073    | 23                                         | 0.5497       | 103               |                 |      |
| 0.3797                                              | 62                                         | 0.9363    | 16                                         |              |                   |                 |      |
| 0.4493                                              | 65                                         | 0.9671    | 9                                          |              |                   |                 |      |
| 0.5504                                              | 68                                         |           |                                            |              |                   |                 |      |

Table 3 (Continued)

| <i>x</i> <sub>1</sub>                     | $H_{\rm m}^{\rm E}/{ m J}~{ m mol}^{-1}$ | <i>x</i> <sub>1</sub> | $H_{\rm m}^{\rm E}/{ m J}~{ m mol}^{-1}$ |  |  |
|-------------------------------------------|------------------------------------------|-----------------------|------------------------------------------|--|--|
| Diethyl carbonate(1) + methyl butyrate(2) |                                          |                       |                                          |  |  |
| 0.0721                                    | 1.3                                      | 0.5831                | 8.2                                      |  |  |
| 0.1345                                    | 2.8                                      | 0.6510                | 8.6                                      |  |  |
| 0.2371                                    | 4.5                                      | 0.7367                | 7.9                                      |  |  |
| 0.3180                                    | 5.8                                      | 0.8484                | 5.5                                      |  |  |
| 0.3834                                    | 6.4                                      | 0.9180                | 3.4                                      |  |  |
| 0.4826                                    | 8.1                                      | 0.9572                | 1.9                                      |  |  |
| Diethyl ca                                | rbonate(1) + ethyl buty                  | rate(2)               |                                          |  |  |
| 0.0435                                    | 6                                        | 0.6208                | 33                                       |  |  |
| 0.0833                                    | 11                                       | 0.6857                | 31                                       |  |  |
| 0.1200                                    | 15                                       | 0.7660                | 25                                       |  |  |
| 0.1538                                    | 19                                       | 0.8136                | 21                                       |  |  |
| 0.2143                                    | 24                                       | 0.8675                | 16                                       |  |  |
| 0.2667                                    | 28                                       | 0.8972                | 12                                       |  |  |
| 0.3530                                    | 33                                       | 0.9290                | 9                                        |  |  |
| 0.4211                                    | 34                                       | 0.9632                | 5                                        |  |  |
| 0.5219                                    | 35                                       |                       |                                          |  |  |
| Diethyl car                               | rbonate(1) + propyl bu                   | tyrate(2)             |                                          |  |  |
| 0.0485                                    | 18                                       | 0.6473                | 94                                       |  |  |
| 0.0925                                    | 32                                       | 0.7099                | 88                                       |  |  |
| 0.1327                                    | 45                                       | 0.7859                | 71                                       |  |  |
| 0.1694                                    | 54                                       | 0.8304                | 60                                       |  |  |
| 0.2342                                    | 70                                       | 0.8801                | 47                                       |  |  |
| 0.2897                                    | 83                                       | 0.9073                | 34                                       |  |  |
| 0.3796                                    | 96                                       | 0.9362                | 26                                       |  |  |
| 0.4493                                    | 101                                      | 0.9671                | 14                                       |  |  |
| 0.5503                                    | 101                                      |                       |                                          |  |  |
| Diethyl car                               | bonate(1) + butyl buty                   | rate(2)               |                                          |  |  |
| 0.0536                                    | 25                                       | 0.6712                | 144                                      |  |  |
| 0.1018                                    | 48                                       | 0.7313                | 131                                      |  |  |
| 0.1454                                    | 66                                       | 0.8032                | 107                                      |  |  |
| 0.1848                                    | 85                                       | 0.8448                | 88                                       |  |  |
| 0.2538                                    | 111                                      | 0.8909                | 65                                       |  |  |
| 0.3120                                    | 131                                      | 0.9159                | 50                                       |  |  |
| 0.4049                                    | 151                                      | 0.9423                | 35                                       |  |  |
| 0.4756                                    | 160                                      | 0.9703                | 18                                       |  |  |
| 0.5764                                    | 157                                      |                       |                                          |  |  |

least-squares method with all points assigned equal weight. The values of the adjustable parameters  $a_k$  obtained from the least-squares analysis are shown in Table 4, together with the standard deviation  $\sigma(H_m^E)$  defined as

$$\sigma(H_{\rm m}^{\rm E}) = \left|\Phi/(N-n)\right|^{0.5} \tag{2}$$

where N = number of experimental points,



Fig. 2. Excess molar enthalpies,  $H_m^E$ , of diethyl carbonate(1) + methyl propanoate(2)( $\bigcirc$ ), + ethyl propanoate(2)( $\bigcirc$ ), + propyl propanoate(2)( $\blacktriangle$ ), + butyl propanoate(2)( $\searrow$ ) at 298.15 K. Solid curves, calculated by Eq. (1).



Fig. 3. Excess molar enthalpies,  $H_m^E$ , of diethyl carbonate(1) + methyl butyrate(2)( $\bigcirc$ ), + ethyl butyrate(2)( $\bigcirc$ ), + propyl butyrate(2)( $\triangle$ ), + butyl butyrate(2)( $\triangleright$ ) at 298.15 K. Solid curves, calculated by Eq. (1).

n = number of adjustable parameters.  $\Phi$  is the objective function defined as

ę

$$\Phi = \sum_{k\geq 0}^{N} \eta_k^2 \tag{3}$$

with  $\eta = H_{m,calcd}^{E} - H_{m}^{E}$ ,  $H_{m,calcd}^{E}$  being determined from the right-hand side of Eq. (1).

Table 4

| Mixțure             | $a_0$ | <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | $\sigma(H_{\rm m}^{\rm E})/{ m J}~{ m mol}^{-1}$ |
|---------------------|-------|-----------------------|-----------------------|-----------------------|--------------------------------------------------|
| Diethyl carbonate   |       |                       |                       |                       |                                                  |
| + methyl acetate    | 387.9 | -61.0                 |                       |                       | 1.0                                              |
| + ethyl acetate     | -14.3 | 27.1                  | 28.8                  |                       | 0.2                                              |
| + propyl acetate    | 83.8  | 19.6                  | -17.5                 |                       | 0.3                                              |
| + butyl acetate     | 101.5 | 5.1                   | -13.5                 |                       | 0.3                                              |
| + pentyl acetate    | 271.8 | 42.2                  | -41.8                 |                       | 0.4                                              |
| + hexyl acetate     | 513.5 | 75.6                  |                       |                       | 1.1                                              |
| + methyl propanoate | 194.3 | 41.9                  | -20.5                 | -79.8                 | 0.3                                              |
| + ethyl propanoate  | -17.5 | 9.7                   | 19.8                  | -8.3                  | 0.1                                              |
| + propyl propanoate | 192.8 | 12.9                  | -43.4                 | -50.5                 | 0.4                                              |
| + butyl propanoate  | 403.4 | 31.0                  |                       |                       | 1.3                                              |
| + methyl butyrate   | 32.4  | 15.4                  |                       |                       | 0.2                                              |
| + ethyl butyrate    | 140.9 | -4.3                  |                       |                       | 0.3                                              |
| + propyl butyrate   | 409.3 | 26.9                  |                       |                       | 0.9                                              |
| + butyl butyrate    | 642.4 | 82.6                  | -71.8                 |                       | 1.5                                              |

Adjustable parameters,  $a_k$ , and standard deviations,  $\sigma(H_m^E)$ , of a least-squares fit of  $H_m^E$  for diethyl carbonate(1) + *n*-alkyl alkanoates (2) by Eq. (1) at 298.15 K

### 4. Conclusions

Figs. 1–3 show a regular increase of  $H_m^E$  with the increase of molecular size of the *n*-alkyl alcanoates, with the exception of mixtures diethyl carbonate + methyl acetate and diethyl carbonate + methyl propionate. In these latter cases, the first element of the series has an irregular behaviour, with values of  $H_m^E$  more larger than those corresponding to pentyl-and ethyl- members, respectively.

Considering that no strong hydrogen bonding may occur between diethyl carbonate and esters and that dipole moment of esters have not a regular trend [4], molecular interactions cannot be invoked to explain the exceptional behaviour of the methyl acetate and methyl propionate molecules which is probably due to their unfavourable packing leading to less interaction energy between molecules after mixing.

This effect is not present in mixtures containing dimethyl carbonate. In fact, it must be pointed out that the mixtures dimethyl carbonate + *n*-alkyl acetates previously measured [13], show a regular increase of  $H_m^E$  with the molecular size of acetates.

# References

- [1] R. Francesconi, F. Comelli, Thermochim. Acta 258 (1993) 49.
- [2] R. Francesconi, F. Comelli, Thermochim. Acta 264 (1995) 95.
- [3] R. Francesconi, F. Comelli, J. Chem. Eng. Data 42 (1997) 45.
- [4] J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, Vol. 2, 4th edn., Wiley-Interscience, New York, 1972.
- [5] M.C. Martin, M.J. Cocero, R.B. Mato, J. Chem. Eng. Data 39 (1994) 535.
- [6] M. Kato, J. Chem. Eng. Data 33 (1988) 499.
- [7] G.G. Benito, A. Cartón, M.A. Uruena, J. Chem. Eng. Data 39 (1994) 249.
- [8] M.M. El-Banna, J. Chem. Eng. Data 42 (1997) 31.
- [9] Handbook of Chemistry and Physics, CRC Press, 76th edn., Boca Raton, New York, 1996.
- [10] P. Monk, I. Wadso, Acta Chem. Scand. 22 (1968) 1843.
- [11] R. Francesconi, F. Comelli, J. Chem. Eng. Data 31 (1986) 250.
- [12] I. Gmehling, J. Chem. Eng. Data 30 (1993) 143.
- [13] F. Comelli, R. Francesconi and S. Ottani, J. Chem. Eng. Data 1997, submitted.